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Abstract

We introduce new projective versions of second-order accurate Runge-Kutta and
Adams-Bashforth methods, and demonstrate their use as outer integrators in solv-
ing stiff differential systems. An important outcome is that the new outer integra-
tors, when combined with an inner telescopic projective integrator, can result in
fully explicit methods with adaptive outer step size selection and solution accuracy
comparable to those obtained by implicit integrators. If the stiff differential equa-
tions are not directly available, our formulations and stability analysis are general
enough to allow the combined outer-inner projective integrators to be applied to
black-box legacy codes or perform a coarse-grained time integration of microscopic
systems to evolve macroscopic behavior, for example.

Key words: Stability, stiff, explicit, teleprojective integration, parabolic,
multiscale

1 Introduction

Projective integration methods were first introduced [8] as explicit methods for solving stiff
systems that have a relatively large gap between their fast and slow time scales. The fast
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scales die out quickly but make the system stiff; they correspond to the Jacobian eigenvalues
with large negative real parts for the linearized problem. The slow scales correspond to
eigenvalues of smaller magnitude and are the solution components of practical interest. For
stiff systems without a large gap in their wide range of time scales, telescopic projective
methods were developed and are described in [9]. The conventional wisdom, however, is that
all reasonable methods for stiff systems have to be implicit, and that some type of Newton-
like method must be used to solve the nonlinear system and thereby avoid a severe restriction
on the step size [3]. Regardless of the use of explicit or implicit methods, the computational
challenge of stiff multiscale systems stems from trying to resolve efficiently the slow time
scale behavior while incorporating the effects from the fast and intermediate time scales.

We are primarily concerned with the integration of stiff ordinary differential equation (ODE)
initial value problems

y′(t) = f(t, y), y(t0) = y0 (1)

where y and f are N -dimensional vectors and N is large. Such large systems arise from the
method of lines spatial discretization of parabolic partial differential equations (PDEs), for
example. But we also have in mind problems for which it is not practical to use implicit
methods. This could occur because a black-box, legacy code is being used to carry out the
time-stepping for the stiff system, and larger time steps are desired. Alternatively, the ac-
tual size of the problem or severe nonlinearities may make the use of Newton-like methods
problematic on, say, massively parallel machines. The latter is related to the difficulty of de-
veloping robust and scalable preconditioners for multi-dimensional PDEs. Finally, projective
integration is a cornerstone to enabling the Equation-free (EF) and Heterogeneous Multi-
scale Method (HMM) approaches to solving multiscale problems [12,5]. The mathematical
analysis and algorithmic development of projective integration is essential for addressing
these various multiscale research topics.

Projective integration has a wide range of applicability and, among all classes of integrators,
is most closely related to stabilized explicit methods. This class of explicit methods has finite
but greatly elongated stability regions that are often suitable for parabolic problems with
negative and strictly real eigenvalues. This elongation is accomplished by using a sequence
of step sizes that gives an enlarged stability region, together with a low-order polynomial
approximation to the exponential operator for that stability region. Second-order accurate
methods are implemented in the codes RKC [17] and ROCK2 [2]. Higher-order stabilized explicit
methods are given by DUMKA3 [14] and ROCK4 [1], for example. The HMM approach for
ODEs [4,7] and the stabilization techniques given in [6] are also closely related techniques.
As we are mainly interested in an initial study of second-order accurate projective integration
methods with respect to implicit methods, a direct comparison with (more mature) stabilized
explicit methods will be reported elsewhere.
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Fig. 1. Solutions for y′(t) = −25 [y(t) − cos(t)].

2 Projective integration methods

The idea behind projective integration methods is best conveyed by applying it to a simple
multiscale problem. In particular, we examine the scalar, stiff initial value problem

y′(t) = −25 [y(t) − cos(t)] (2)

for y(0) = 0 and t ∈ [0, 2π]. The exact solution

y(t) = 625/626 [cos(t) + 1/25 sin(t) − exp(−25t)] (3)

has a fast time scale due to the exponential term. After that fast term essentially vanishes
at t ≈ 1, we mainly want to resolve the smooth and slowly varying behavior due to the
trigonometric terms. Figure 1(a) shows the exact solution y(t). That solution, along with
solutions corresponding to different initial values, are shown in Figure 1(b). Despite the
dramatic bunching of all trajectories toward a common cosine-like manifold, solution curves
for different initial values do not actually merge or intersect—they only approach the slow
manifold asymptotically. Note that this problem has only one fast component. In general,
we will be interested in systems with many fast components of differing speeds (e.g., the
multi-dimensional heat equation or other dissipative parabolic PDEs).

Forward Euler, and other conventional explicit methods, are notoriously inefficient for nu-
merically integrating stiff initial value problems. The fundamental difficulty is that explicit
methods are adversely affected by the behavior of nearby solution curves. The trouble be-
gins when a predicted solution is slightly off the slow manifold, and on a nearby solution
curve that steeply approaches the manifold. The slope of that predicted solution is therefore
extremely large in magnitude because of the steep approach of the so-called fast transients.
This wrong impression of how the actual solution is changing forces the explicit method to
take relatively small step sizes because the large slope implies the current solution is chang-
ing rapidly. This curse of stiffness persists throughout the entire time interval, except for a
short initial phase when the fast time scales have not decayed greatly. For step sizes that
are too large, the typical situation is that the predicted solutions become increasingly worse
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Fig. 2. Example of projective forward Euler taking small, damping steps followed by a large projec-
tive step. The black curve is the slow manifold for the stiff problem. The open dots are the solution
values that stably follow the fast transients toward the manifold. The arrows indicate where chord
slopes are evaluated for taking the projective step along the dashed line.

and move further away from the manifold; that is, the explicit method becomes unstable.

Projective integration methods are explicit methods that can be tailored to efficiently ex-
ploit the multiscale features that are characteristic of stiff systems; namely, fast transients
asymptotically merging into a slow manifold. Intuitively, the idea of projective integration
is straightforward. Using Figure 2 as a rough example, an inner integrator (e.g., forward
Euler) is applied with a constant step size small enough to follow stably the fast transients
toward the slow manifold. After several of these steps, a chord slope is computed based on
the current and previous solution values. That slope is essentially an estimate of how the
slow manifold is changing. Using the current estimate of the solution and its chord slope near
the manifold, a large projective step is taken in the direction of the chord. The combination
of the inner damping steps and the projective step constitutes one outer projective forward
Euler step. The important result is that the predicted solution is now based on the estimated
behavior of the manifold rather than that of the transients. The small, damping steps use
a step size commensurate with the fast time scales, and neutralize the fast transients. The
projective step size can then be chosen based on the slow time scale behavior and accuracy
requirements of the stiff system.

Projective integration is a process that can be applied to a legacy code, the output from a
microscopic simulation of a more detailed model, or any other type of step-by-step integrator.
The process is exemplified by the projective forward Euler method.

Projective Forward Euler (PFE)

(i). Using a suitable inner integrator, advance k steps of length h0 from yn to obtain the
solution yn+k. For the inner integrator, the main requirements are that it is stable and of
at least first-order accuracy. Since we want explicit methods, the step size h0 is chosen
for stability and typically such that the method is strongly damping for the fastest
components. For example, if the inner integrator is forward Euler, the best choice is the
reciprocal of the spectral radius of the Jacobian ∂f/∂y; that is, h0 = 1/ maxi |λi|. The
purpose of these k steps is to damp the fast components.

(ii). Perform one more inner integration step to compute yn+k+1, and use it to approximate
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the derivative as the chord slope

v′

n+k+1,n+k =
yn+k+1 − yn+k

h0

(4)

(iii). Perform the projective step

yn+s = yn+k+1 + (Mh0) v′

n+k+1,n+k (5)

to advance the solution a distance Mh0 for real M . The chord slope calculation in eq. (4)
and projective step in eq. (5) are vector operations that are cheap to compute.

Defining s = k + 1 + M , the total length of this PFE integration step (called an outer

integration step) is sh0. While the notation and our examples may suggest that M and s are
integers, there is no such restriction and yn+r should be interpreted as the approximation to
y at the time tn + rh0 for any real r.

Projective integration can be applied efficiently to stiff systems that have a wide separation
between the fast and slow time scales. A key requirement is that the fast scales are well-
clustered so that the inner steps are effective in damping the transients toward the low-
dimensional, slow manifold. For the stiff initial value problem y′ = f(t, y), the fast scales
correspond to the set of Jacobian ∂f/∂y eigenvalues that have the largest and most negative
real parts. The slow scales correspond to the set of eigenvalues that are significantly closer to
the origin, relative to the fast scales. If each of these sets is tightly clustered and a relatively
large gap exists between the time scales, then the stiff system can be integrated with an outer
integrator step that internally consists of: a few inner damping steps to neutralize the fast
scales, then a chord slope calculation near the manifold and a large projective step to follow
the slow scales. The length of the projective step, and consequently the overall efficiency of
the projective integrator, is strongly related to the size of the gap. For stiff systems with no
clear separation of scales, telescopic projective (i.e., teleprojective) integrators are efficient
methods for carrying out the time integration.

3 Teleprojective integration

As presented in [9], we can iterate (or telescope) the projective integration process by using
the current outer projective integrator as an inner integrator within yet another outer pro-
jective integrator. This layering of projective integrators can be repeated as many times as
desired. Figure 3 gives an example of PFE, with L = 2 layers, that generates a telescopic
PFE step of 100h0. At the innermost layer (L = 0), the integrator steps are of size h0.
At higher layers, the number of inner damping steps is k = 3 and the multiplier for the
projective step is M = 6. For layer 1 and layer 2, the projective steps are 6h0 and 60h0,
respectively. If an additional layer of PFE were used, it would have 4 inner steps of 100h0,
a projective step of 600h0, and yield a telescopic step of 1, 000h0.
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(damping k = 3, projective M = 6, layers L = 2)

1 PFE step
at layer 2

at layer 1

or first inner step
for next layer

step number at innermost layer

1 telescopic PFE step,

16 integrator steps
at innermost layer

1 outermost step of telescopic projective forward Euler

Fig. 3. Projective forward Euler with L = 2 layers of telescoping.

Naturally, the stability and accuracy of teleprojective integration depends on a suitable
choice of values for h0, k, M and L for the stiff system. Note that if the innermost integrator
were conventional forward Euler, the chord slope v′

n+k+1,n+k calculated in eq. (4) would be
exactly f(tn+k, yn+k). The use of function evaluations for directly calculating derivatives
is common to Runge-Kutta-Chebyshev methods such as [1,2,17,14], and the explicit time
stepping methods for stiff ODEs described in [6]. In contrast, we use chord slopes because
we want to accommodate legacy codes or inner integrators other than forward Euler, and
the use of chord slopes is an essential ingredient of teleprojective integration (see Figure 3).
Chord slopes also simplify the study of stability because the properties of the outer integrator
can be analyzed independently of the choice of the inner integrator [8].

Further discussion and analysis are greatly facilitated if we assume that at each layer of
telescoping, k and M are constant. We restrict ourselves to systems in which any positive
Jacobian eigenvalues are small, and initially we assume that all eigenvalues are close to the
real axis. This allows us to consider stability along the real axis only, and infer instability in
its neighborhood by continuity.

The step size h0 is chosen so that the one-step error amplification of the innermost integrator,
ρ(h0λ), satisfies |ρ| < 1 for all eigenvalues λ, except for those with nonnegative real parts.
The linear stability polynomial for one PFE step is

σ(ρ) = ρk+1 + M(ρk+1 − ρk) = [(M + 1)ρ − M ] ρk. (6)

Note that σ(0) = 0 and σ(1) = 1 independent of k and M . The stability region for given
values of k and M can be obtained by plotting |σ(ρ)| = 1 for ρ in the complex-plane. If
the stability region includes all ρ ∈ [0, 1]; we refer to it as a [0, 1]-stability region and such
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Table I

Critical values for [0, 1]-stable projective forward Euler

A B

PFE (L = 1 layer) Telescopic PFE (L > 1 layers)

k M0 β ρ̂ M∞ β ρ̂

1 4.8284 0.1716 0.4142 2 0.3333 0.3333

2 8.4435 0.2980 0.5961 3 0.25 0.5

3 12.0446 0.3881 0.6925 6.6560 0.4613 0.6520

4 15.6411 0.4555 0.7519 8.3172 0.4326 0.7141

5 19.2357 0.5081 0.7922 12.2147 0.5520 0.7703

integrators as [0, 1]-stable. For PFE, with L > 1 layers, the stability polynomial is

σj+1(ρ) = [(M + 1)σj(ρ) − M ] σk
j (ρ) (7)

for j = 1, . . . , L − 1 where σ1(ρ) = σ(ρ) is given in eq. (6). If the given values for k, M and
L result in a stability region that includes all ρ ∈ [0, 1], then the teleprojective integrator is
[0, 1]-stable.

In the analysis that follows, we study the stability interval for real values of ρ rather than the
entire stability region in the complex ρ-plane. This is sufficient for parabolic problems and,
as we will see, choosing less aggressive values for the parameters results in stability regions
that include a neighborhood of [0, 1); see, for example, Figure 5(a).

We are primarily interested in [0, 1]-stable methods which have an interval of stability on
the real axis that includes [0, 1]. Integrators that are not [0, 1]-stable are still potentially
useful for systems with gaps in the eigenvalue spectrum. The chief advantage of [0, 1]-stable
integrators is that no separation of time scales is assumed or required. Let the real stability
domain that includes [0, 1] be [−βs, 1] for nonnegative βs. (Because we require at least first-
order accuracy, 1 + ǫ cannot be stable for small ǫ > 0.) Let the real stability range of σ(ρ)
for ρ ∈ [−βs, 1] be [−γ, 1] for nonnegative γ.

Table I gives critical values regarding [0, 1]-stability for PFE and telescopic PFE. These
values are nonnegative real numbers, with β ∈ [0, 1] and ρ̂ ∈ [0, 1]. For a given value of k,
Table IA means the following. For 0 ≤ M < M0, the PFE real stability domain [−βs, 1]
always includes [−β, 1] because at these lesser values of M , we have |σ(ρ)| < 1 for all ρ
within the interval [−β, 1]. For M = M0,

|σ( ρ̂ )| = |σ(−β)| = 1 (8)

and βs = β. Finally, for M > M0, [0, 1]-stability is lost because |σ(ρ)| exceeds one for ρ in the
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Fig. 4. Real stability polynomial σ(ρ) for PFE (k = 3,M = 6)

[0, 1]-interval. The rule of thumb for PFE is that the method is [0, 1]-stable if M ≤ 3.59 k; a
derivation of this condition is given in [8]. For Table IB, and a given value of k, the meaning
of β and ρ̂ is slightly different. For 0 ≤ M < M∞, the telescopic PFE real stability domain
[−βs, 1] always includes [−β, 1]—regardless of the number of layers used. For M = M∞,

σ(ρ̂) = −β (9)

and γ = β. Hence σ(ρ) maps [−γ, 1] onto itself. In general, for [0, 1]-stable real polynomials
where [−γ, 1] ⊆ [−β, 1], we will informally say that the γ-range is less than or equal to the
β-domain. For telescopic PFE and a given value of k, this condition is significant because
it ensures that, when telescoping is applied, the integrator remains [0, 1]-stable all the way
up to the top layer since at each layer its γ-range is not wider than [−β, 1]. For reference,
we note that the [0, 1]-stability-related intervals for telescopic PFE are nested as follows for
0 ≤ M ≤ M∞:

[−γ, 1] ⊆ [−β, 1] ⊆ [−βs, 1] ⊆ [−1, 1]. (10)

A detailed analysis of the [0, 1]-stability of telescopic PFE is given in [9].

Figures 4(a) and 4(b) show plots of the real stability polynomial for PFE (k = 3, M = 6)
when the number of layers is L = 1 and L = 2. The integrator remains [0, 1]-stable for
arbitrarily many layers because, from Table IB and for k = 3, we have M = 6 < 6.65604 =
M∞.

We conclude the discussion of the telescopic example by examining its stability region and
step size sequence in generating a telescopic step of 100h0. As evident in Figure 5(a), the
integrator is [0, 1]-stable since the stability region encloses all real ρ ∈ [0, 1]. From Figure 5(b),
we find that the telescopic step of 100h0 is actually the sum of 21 step sizes: 16 innermost
integrator steps and 5 projective steps. The main cost of the telescopic step comes from
performing the 16 innermost integrator steps of size h0, which damp and stabilize the fastest
time scale of the stiff system. The projective steps, which are larger, develop and stabilize
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Fig. 5. Stability region and step size sequence for PFE (k = 3,M = 6, L = 2)

the system at the fast and intermediate time scales. The key result is that the layering of
[0, 1]-stable PFE integrators has the effect of sequencing the variety of step sizes so that
internal instabilities do not arise in each telescopic step.

In general, using L layers of PFE generates a telescopic step of size (k + 1 + M)Lh0 using
only (k + 1)L innermost integrator steps. Relative to forward Euler, the efficiency of PFE
improves by a factor of (k+1+M)/(k+1) per layer. This efficiency stems from the fact that
the projective steps, at layers j > 1, are based on chord slopes rather than direct evaluations
of f(t, y). The chord slopes are calculated cheaply as a finite difference of previously computed
solutions. But clearly we cannot continue adding layers and improving efficiency indefinitely.
The limiting consideration is that the size of the telescopic step needs to be based on the
accuracy requirements for the stiff system. Furthermore, we want also to investigate the
case where the step taken at the final layer is more than first-order accurate. Therefore,
with the objective of developing the solution of a stiff system for accuracy, we will do so
by using telescopically large but stable step sizes for the inner damping steps of a second-
order accurate outer projective integration method. The inner steps will be generated by
[0, 1]-stable telescopic PFE and the outer integrator will be the projective counterpart to
conventional second-order accurate Runge-Kutta and Adams-Bashforth methods.

4 Second-order accurate projective integrators

One way to develop a second-order accurate projective integrator is to model it after the
conventional trapezoidal method for ODEs. In the latter, a forward step is taken based on
a weighted average of the slope at the current time step and the predicted slope at the
next time step. The projective counterpart involves taking several damping steps prior to
estimating a chord slope near the current and next time step. Then, the projective step to
the next time step is taken based on a weighted average of those chord slopes. As first derived
in [8], the weights are based on the number of inner damping steps k and the multiplier M
for the projective step. An example of this approach is given in the top layer of Figure 6.
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telescopic
projective forward
Euler (PFE) steps
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1 step of Projective Runge−Kutta (damping k = 2)

PFE

PRK

Fig. 6. Projective Runge-Kutta as an outer integrator for telescopic projective forward Euler.

Such predictor-corrector implementations are useful because an error estimate can be made
from their difference. If reliable, a norm of the error estimate can be used to either reject the
current step or select the next step size for the outer integrator. A full development of efficient
error estimation techniques for projective integrators is beyond the scope of this article, but it
is certainly a topic worthy of further research. The main drawback for conventional predictor-
corrector methods is that they require the expense of (at least) two slope evaluations per step.
In contrast, conventional Adams-Bashforth methods require only one slope evaluation per
step. Therefore, as a potentially more cost-effective alternative to projective Runge-Kutta,
we will also develop a projective counterpart to the Adams-Bashforth method.

4.1 Projective Runge-Kutta

The projective Runge-Kutta (PRK) method we derive has two stages. The formula is

yn+s = yn+k+1 + Mh0

[
αv′

n+k+1,n+k + (1 − α)v′

n+s+k1+1,n+s+k1

]
, (11)

where k and k1 are the number of inner damping steps used at the step starting from tn and
tn+s, respectively. The real scalars α and M are the method coefficients for the projective
step, and the latter v′ term in eq. (11) is the chord slope calculated after the initial PFE
step to tn+s. The stability polynomial is

σPRK(ρ) = ρk+1 + M
[
α(ρk+1 − ρk) + (1 − α)(ρk1+1 − ρk1)σPFE(ρ)

]
, (12)
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and it closely resembles the formula (11). Note that ρk+1 −ρk corresponds to the calculation
of the chord slope near the current step tn, and σPFE is the PFE stability polynomial from
eq. (6).

The standard local truncation error analysis proceeds by determining the error in yn+s under
the assumption that yn = y(tn). We compute this error, and then determine the weighting
coefficient α that eliminates the second-order error term. To begin, we need to know the
second-order error introduced at each step of the inner integrator. Since we do not want
to specify what inner integrator is used, assume that the inner integrator starts from the
correct solution y(tn) and takes one step of size h0; that is,

yn+1 = y(tn) + h0y
′

n +
(1 − ξn)h2

0

2
y′′

n + O(h3
0) = y(tn+1) −

ξnh
2
0

2
y′′

n + O(h3
0). (13)

Thus, ξn is the coefficient of the scaled second-order error term in the inner integrator. If the
inner integrator is forward Euler, ξn = 1. If the inner integrator is second- or higher-order
(possibly a legacy code), ξn = 0. Note that because the inner integrator is at least first-order,
all intermediate terms in an integration starting from the correct value y(tn) will have no
lower than second-order errors.

The analysis continues by writing the projective Runge-Kutta formula (11) in a way that
keeps through second-order terms in h0. We replace terms like h0v

′

n+k+1,n+k with

h0v
′

n+k+1,n+k = yn+k+1 − yn+k = h0y
′

n+k+1/2 −
h2

0ξn+k

2
y′′ + O(h3

0)

=h0y
′(tn+k+1/2) −

h2
0ξn+k

2
y′′ + O(h3

0) (14)

and we replace yn+k+1 with

yn+k+1 = y(tn+k+1) −
h2

0

2

k∑

i=0

ξn+iy
′′ + O(h3

0). (15)

Note that we do not need to specify the point at which y′′ is evaluated since any change
(within the range of the step) introduces only third-order error terms. With these substitu-
tions, the PRK formula (11) can be written as

yn+s = y(tn+k+1) −
h2

0

2

k∑

i=0

ξn+iy
′′ + Mh0[y

′(tn+k+1+M/2)

+α[y′(tn+k+1/2) − y′(tn+k+1+M/2)] + (1 − α)[y′(tn+s+k1+1/2) − y′(tn+k+1+M/2)]]

−Mh2
0

2
[αξn+k + (1 − α)ξn+s+k1

] y′′ + O(h3
0).

(16)
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Noting that

y(tn+k+1) + Mh0y
′(tn+k+1+M/2) = y(tn+s) + O(h3

0) (17)

we have

yn+s = y(tn+s) −
Mh2

0y
′′

2

[
2α(M + 1 + k1) −

(
M + 1 + 2k1 −

1

M
ξPRK
n

)]
+ O(h3

0) (18)

where

ξPRK
n =

k∑

i=0

ξn+i + M [αξn+k + (1 − α)ξn+s+k1
] . (19)

For second-order accurate projective Runge-Kutta,

α =
M + 1 + 2k1 − 1

M
ξPRK
n

2(M + 1 + k1)
=

M + 1 + 2k1 − 1
M

[∑k
i=0 ξn+i + Mξn+s+k1

]

2(M + 1 + k1) + ξn+k − ξn+s+k1

(20)

since this choice eliminates the second-order error term in eq. (18). If the inner integrator is
forward Euler, ξn = 1 is independent of the step number n, so ξPRK

n = (k + 1 + M)ξn = s.

If the outer projective Runge-Kutta integrator uses telescopic PFE for each inner damping
step, all we need is the form of the error term in each layer of the inner integrator and
expressed in the manner of (13). We define ξn,j to be the scaled error coefficient for the j-th
layer at step n. If ξ0,n is independent of n (it is one for a forward Euler inner integrator,
and zero for a second- or higher-order inner integrator) and if all lower layers use the same
values of k and M , we can easily show that ξn,j is independent of n. Writing ξn,j = ξ∗j when
ξn,j is independent of n, we have

ξ∗j+1 =
M(M + 1)

s2
+

ξ∗j
s

. (21)

When, as is likely to happen in a production code, k and M change from step to step and
layer to layer, ξn,j for layer j can be computed on-the-fly. The cost is trivial because, for up
to second-order accuracy, it is sufficient to match the first three terms in the power series
expansion of the solution of y′ = λy. This allows the ξn,j term to be calculated for each
layer of PFE. If the ξn,j terms at each of the k + 1 steps at the j-th layer are ξn+i,j for
i = 0, 1, . . . , k, then at the next layer

ξn,j+1 =
M(M + 1)

s2
+

(∑k
i=0 ξn+i,j + Mξn+k,j

)

s2
. (22)

12



Table II

Critical values for [0, 1]-stable second-order accurate projective integrators

A B

Projective Runge-Kutta Projective Adams-Bashforth

k M0 β ρ̂ M0 β ρ̂

1 7.7958 0.1137 1/2 3.2227 0.2368 0.4142

2 14.1501 0.3333 2/3 5.3631 0.2980 0.5961

3 20.4726 0.3310 3/4 7.5006 0.4458 0.6925

4 26.7848 0.4847 4/5 9.6374 0.4555 0.7519

5 33.0924 0.4596 5/6 11.7739 0.5557 0.7922

Table IIA shows critical values for [0, 1]-stable projective Runge-Kutta. We assume forward
Euler is the inner integrator, which means L = 0 and ξn,0 = 1. We also assume k = k1 so that
the number of inner damping steps is the same at tn and tn+s, respectively. An examination of
the PRK real stability polynomial reveals that as M becomes large, eventually [0, 1]-stability
is lost because σPRK(ρ) peaks at +1 for ρ within [0, 1]. For a given value of k, the critical
values for M and ρ (i.e., M0 and ρ̂) can be obtained by solving the polynomial equations
σPRK(ρ) = 1 and ∂σPRK(ρ)/∂ρ = 0. In general, for any integer k > 0,

ρ̂ = k/(k + 1) (23)

and additional calculations in Mathematica reveal that

M0 =
1 − η +

√
1 + k(2 − η)η

η
(24)

where η = kk(k + 1)−(k+1). For 0 ≤ M < M0, the PRK real stability domain always in-
cludes [−β, 1] and, for M = M0, |σPRK(ρ̂)| = 1; see Table IIA. Finally, as k becomes large,
the limiting value is

M0 =
[
e +

√
e (2 + e)

]
k ≈ 6.2996 k. (25)

This value provides a rule of thumb for predicting when a sufficiently large projective step
can result in a loss of [0, 1]-stability for the outer PRK integrator. In terms of cost, the
number of inner integration steps required for the outer PRK step is 2(k + 1).
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4.2 Projective Adams-Bashforth

The formula for second-order accurate projective Adams-Bashforth (PAB) is

yn+s = yn+k+1 + Mh0[αv′

n+k+1,n+k + (1 − α)v′

n−s
−1+k

−1+1,n−s
−1+k

−1
], (26)

where the latter v′ term is the chord slope from the previous time step (which is assumed
to use a k value of k−1, an M value of M−1 and s−1 = k−1 + 1 + M−1). The projective
Adams-Bashforth stability polynomial is

σ2
PAB(ρ) =

[
ρk+1 + αM (ρk+1 − ρk)

]
σPAB(ρ) + M(1 − α)(ρk

−1+1 − ρk
−1). (27)

An analysis similar to that for projective Runge-Kutta and its error terms reveals that

yn+s = y(tn+k+1) −
h2

0

2

k∑

i=0

ξn+iy
′′ + Mh0[y

′(tn+k+1+M/2)

+α[y′(tn+k+1/2) − y′(tn+k+1+M/2)] + (1 − α)[y′(tn−s
−1+k

−1+1/2) − y′(tn+k+1+M/2)]]

−Mh2
0

2

[
αξn+k + (1 − α)ξn−s

−1+k
−1

]
y′′ + O(h3

0).

= y(tn+k+1) + Mh0y
′(tn+k+1+M/2)

−Mh2
0y

′′

2

[
−2α(M−1 + 1 + k) +

(
M + 1 + 2(M−1 + 1 + k) − 1

M
ξPAB
n

)]

+O(h3
0) (28)

where

ξPAB
n =

k∑

i=0

ξn+i + M [αξn+k + (1 − α)ξn−s
−1+k

−1
]. (29)

The value of α for a second-order accurate method is therefore given by

α = 1 +
M + 1 − 1

M
ξPAB
n

2(M−1 + 1 + k)
= 1 +

M + 1 − 1
M

[∑k
i=0 ξn+i + Mξn+k

]

2(M−1 + 1 + k) + ξn+k − ξn−s
−1+k

−1

. (30)

As with projective Runge-Kutta, if k and M are constant and the inner integrator is forward
Euler, ξPAB

n = s. The earlier recurrence relation, (22), can be used to compute ξn,j in each
layer of telescoping.

A useful, preliminary analysis of PAB is possible if we assume a common value of k and M at
the current and previous time step, and a forward Euler inner integrator. (In implementing
a production code, however, we will want to vary k and M at each time step.) For a common
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Table III

Comparison of second-order accurate integrators for the same cost:

Projective Runge-Kutta and Projective Adams-Bashforth

s = k + 1 + M0 βs

cost PRK PAB PRK PAB

4 9.7958 11.5006 0.1137 0.4458

6 17.1501 17.7739 0.3333 0.5557

8 24.4726 24.0466 0.3310 0.6255

10 30.7848 30.3192 0.4847 0.6743

value of k, an examination of the PAB real stability polynomial reveals that as M becomes
large, eventually [0, 1]-stability is lost because at least one of the roots of eq. (27) gives
|σPAB(ρ)| > 1 for ρ within [0, 1]. Unfortunately, it is not possible to obtain formulas for
M0 and ρ̂ explicitly in terms of k. Table IIB gives critical values for [0, 1]-stability for a
given value of k. For 0 ≤ M < M0, the PAB real stability domain always includes [−β, 1];
for M = M0, |σPAB(ρ̂)| = 1. Empirically, by observing M0 for increasingly large k, we find
that the limiting value is

M0 ≈ 2.14 k. (31)

With regard to cost, the number of inner integration steps required for the outer PAB step
is k + 1.

4.3 Discussion

In making a fair comparison between these two projective integrators, recall that one PRK
and PAB outer step costs 2(k + 1) and k + 1 inner integrator steps, respectively. For the
same cost, we consider the largest possible [0, 1]-stable outer step s and its corresponding
real stability domain [−βs, 1]. The main results are given in Table III. Note that as the
cost increases, that PRK gives s values that are slightly larger than for PAB. The potential
advantage of a larger outer step s is somewhat offset by the fact that βs is smaller for PRK
than for PAB. As we demonstrate in §5, a [0, 1]-stable outer integrator with a small βs is
not desirable because an inner integrator with a large real stability range (i.e., γ-range) may
result in a combined outer-inner integrator that is not [0, 1]-stable.
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Fig. 7. Stability plots for projective Runge-Kutta (PRK, k = 1,M = 7.5), projective forward Euler
(PFE, k = 2,M = 3), and outer PRK with PFE as an inner integrator.

5 Stability analysis for higher-order accurate teleprojective integrators

Our approach for combining higher-order accurate outer projective integrators with layers of
projective forward Euler is as follows. For stabilizing and developing the stiff system at fast
and intermediate time scales, the accuracy of first-order projective integrators is sufficient. In
particular, we intend to use [0, 1]-stable PFE and increase the number of layers until accuracy
requirements become the important consideration for the telescopic step. The same k and M
values are applied at each layer. For following the stiff system accurately at the slow time
scales, a higher-order accurate projective integrator is added as the final layer.

Potential problems with the [0, 1]-stability of this approach can be demonstrated with the
simple example in Figure 7. The example involves using [0, 1]-stable PRK (k = 1, M = 7.5)
as an outer integrator and [0, 1]-stable PFE (k = 2, M = 3, L = 1) as the inner integrator.
(Telescoping is not being used in this example.) Plots of their respective real stability poly-
nomials are given in Figure 7(a). By inspection, each method is [0, 1]-stable because |σ| ≤ 1
for all ρ within [0, 1]. However, Figure 7(b) reveals that the combined method, PRK with
PFE as an inner integrator, is not [0, 1]-stable. A peak value of 4.10 (not shown) is reached
at ρ = 0.5. Figure 7(c) shows the stability region of the combined method as plotted in the
complex ρ-plane. It turns out that [0, 1]-stability can be restored (i.e., no gap for ρ ∈ [0, 1])
by reducing the outer PRK value of M from 7.5 to 3 or less. But this reduction of M is an
unsatisfactory and inefficient option that we generally want to avoid.

What causes this combined outer-inner integrator not to be [0, 1]-stable? The problem is
revealed by the diagrammed equation

σouter(σinner(

0.5∈[0,1]
︷︸︸︷
ρ

︸ ︷︷ ︸
σ=−0.25

)) = 4.10 > 1. (32)

The violation occurs for other real values in the neighborhood of ρ = 0.5. Briefly put, the
trouble is that the γ-range for the inner PFE integrator is wider than the real stability
domain for the outer PRK integrator. As can be observed from Figure 7(a), the PFE range

16



is [−0.25, 1] and the domain for PRK stability is only [−0.118, 1]. This mismatch is the cause
of lost [0, 1]-stability when combining the two integrators. The gap along the real axis is due
to the values of ρ that give

−0.25 ≤ σPFE(ρ) ≤ −0.118,

because those lead directly to values with |σPRK(σPFE(ρ))| > 1.

The remedy is for the mismatch to be the other way around in order for a composition of
[0, 1]-stable integrators to yield a combined integrator that is also [0, 1]-stable. That is, the
γ-range of the inner integrator needs to be less than or equal to the real stability βs-domain
of the outer integrator. In general, a potential difficulty is that γ for the inner integrator may
not be readily available or easy to determine. Fortunately, for [0, 1]-stable telescopic PFE
with k damping steps, Table IB gives the γ-range least upper-bound [−γ, 1] ⊆ [−β, 1] at
each layer and consequently for the telescopic step. For second-order accurate methods and
a given number of damping steps, Table II gives the greatest lower bound [−β, 1] ⊆ [−βs, 1]
on the real stability domain for [0, 1]-stable projective Runge-Kutta and Adams-Bashforth
outer integrators. The main result is that the combined outer-inner integrator is [0, 1]-stable
if the condition

[−γ, 1]inner ⊆ [−β, 1]inner ⊆ [−β, 1]outer︸ ︷︷ ︸
⊆ [−βs, 1]outer (33)

is satisfied by the inner and outer β values (see underbrace). The latter values are deter-
mined by the number of damping steps used by the [0, 1]-stable inner and outer integrators,
respectively, and (as noted) are readily available from Tables IB and II.

6 Test problems and discussion

We have developed a research code in Mathematica that implements a preliminary version
of these second-order accurate teleprojective integrators. We now examine several significant
features of the integrators, comment on their efficiency in comparison to implicit solvers for
stiff initial value problems, and give numerical results for some simple test problems.

6.1 Order of accuracy

The purpose of this study is to assess numerically the order of accuracy achieved by the
projective Runge-Kutta (PRK) and Adams-Bashforth (PAB) integrators in §4 as the outer
step changes. (Our analysis that showed second order was in terms of the inner step size
that, in practice, is fixed by the need to damp the fastest component.) The simplest possible
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case to consider is a single, scalar ODE test problem. For the behavior of the true error, we
assume

|error| ≈ CHp so that log(|error|) ≈ log(C) + p log(H). (34)

The error behavior can then be parameterized from a least-squares fit of the logarithmically-
scaled data for true error versus a constant outer integrator step size H : the error constant
is C, and the slope p is the order of accuracy.

A stiff test problem is not suitable for these studies because local errors are strongly damped
over time. Instead, a nonstiff, nonlinear autonomous problem is integrated over a time interval
for which the solution is not quite at its steady state value. The scalar initial value problem
is:

y′(t) =
(y(t) − 20001)(y(t)− 1)

20000
, y(0) = 10001, (35)

for t ∈ [0, 15]. The exact solution and the final value are:

y(t) = 1 +
20000

1 + et
, y(15) = 1.00612. (36)

From t = 0 to t = 15, the initial value rapidly drops four orders of magnitude as it approaches
its steady state value of 1.

The order of accuracy is estimated on the following basis. The inner integrator is telescopic
PFE; the outer integrators are PRK or PAB. For PFE, k = 2, M = 3, and L = 3 (with
s = k + 1 + M = 6). For the innermost step size, we choose h0 = 10−8 which means each
inner damping step is of length sLh0 = 2.16 × 10−6. If we require that the outer integrators
are [0, 1]-stable, the maximum [0, 1]-stable outer step size can be estimated as

H = (k + 1 + M0) sLh0 (37)

where M0 depends on the value of k used by the outer integrator. For outer PRK and PAB
with k = 2, we get

H = (17.1501) 2.16 × 10−6 = 3.70 × 10−5 and

H = (8.3631) 2.16 × 10−6 = 1.81 × 10−5

respectively. But [0, 1]-stability is not required for this one-scale example problem, so from (37)
we find that large H with M ≫ M0 can be used in resolving the slow scale behavior since
there are no fast and intermediate scales to cause instability. The outer step sizes we consider
start at H = 0.008, and increase by a factor of

√
2 to H = 0.512. Figure 8 shows the observed

order of accuracy for the outer step sizes as based on the least-squares slope. The PRK and
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Fig. 8. Order of accuracy estimated as the slope of a least-squares fit of error versus outer step size.

PAB slopes are nearly identical, p = 2.13, but the error constant C is smaller for PRK than
for PAB.

6.2 Local error estimation and adaptive outer step size selection

In general, the overall order of accuracy of PRK and PAB is approximately 2. But locally
this estimate can be off the mark if, for example, the error in an inner integrator has the
opposite sign of the error in the outer integrator. Since the local error is some combination
of the two, there can be cancellation. Nonetheless, the assumption of second-order accurate
behavior is useful for the purposes of local error estimation and adaptive outer step size
selection.

Our research code currently carries out local error estimation via Richardson extrapolation.
A solution y1 is computed based on an outer step size Hn; then, the solution y2 is computed
based on two outer steps of size Hn/2. The local error is estimated as

errorn =
y2 − y1

2p − 1
(38)

where p is the order of accuracy of the integrator. Naturally, for outer PRK and outer PAB
we choose p = 2. Outer step size selection or rejection is then a function of the estimated
local error, current step size, and user-specified error tolerances (absolute and relative)

Hn+1 = Hn

(
Cn

||errorn||

)1/3

(39)

for a positive method-dependent constant Cn and a weighted, tolerance-dependent norm
of the estimated local error. If the new step size increases or decreases significantly, the
number of layers of telescoping may need to be adjusted to accommodate the change. Such
adaptivity for inner telescoping is the subject of ongoing research. Currently, we assume the
inner telescopic PFE parameters remain fixed. The outer integrator uses a constant number of
damping steps k, but varies the projective step M based on the next selected outer step size.
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Finally, we note that local error estimation via Richard extrapolation is expensive due to the
overhead of two additional integrations in computing y2. It is likely that better approaches
can be developed based on predictor-corrector or embedded Runge-Kutta techniques [16].

6.3 Cost analysis with respect to implicit integrators

We now present a simplified cost analysis for solving large-scale stiff initial value problems.
The derivation is similar to the approach used for implicit and (stabilized) explicit methods
in [3,18]. The main results assume that we are solving a spatially-discretized parabolic partial
differential equation (PDE) with a uniform mesh width of ∆ in each of the d spatial directions.
A typical example is a d-dimensional diffusion equation with a time-dependent source term
and Dirichlet boundary conditions within a d-dimensional region of unit length in each
spatial direction. The total number of equations is approximately ∆−d and we can estimate
the most negative, real eigenvalue of the sparse Jacobian as −4d∆−2. Note that the step size
for conventional forward Euler stability is therefore h0 ≈ 1/(4d∆−2).

For implicit integrators such as those based on backward differentiation formulas (BDFs), the
BDF time-discretized equations are usually solved using one or more Newton iterations at
each time step. The update to each Newton iterate is obtained by solving a large-scale linear
system of equations. For one-dimensional PDEs, these linear systems can generally be solved
efficiently with Gaussian elimination or a direct method for band-structured matrices. With
two- and three-dimensional PDEs, we assume an inexact preconditioned Newton-Krylov
method is used. For a preconditioned Krylov method, we estimate that O(∆−1/2) iterations
are needed for approximately solving the linear system to the required accuracy within the
BDF integrator. The total number of function evaluations for one time step is then Nf ≈
NL O(∆−1/2), where NL is the number of linear systems solved. Because the amount of work
performed in a function evaluation is proportional to the number of equations O(∆−d) , the
total computational work for integrating a unit time interval with step size H is

Wimplicit ≈ H−1NL O(∆−(d+1/2)). (40)

A similar cost analysis can be carried out for the second-order accurate projective integrators.
The total number of function evaluations for a [0, 1]-stable outer PRK step comes from
the 2(kPRK + 1) damping steps, each of which requires (k + 1)(L+1) function evaluations by
the inner telescopic PFE integrator. The total number of function evaluations for one outer
PRK step is Nf = 2(kPRK+1)(k+1)L+1, where kPRK is sufficiently large so that the outermost
projective step culminates in a step size H of acceptable accuracy. The total computational
work for integrating the unit time interval with step size H is

WPRK ≈ 2H−1(kPRK + 1)(k + 1)L+1O(∆−d) (41)
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and for projective Adams-Bashforth

WPAB ≈ H−1(kPAB + 1)(k + 1)L+1O(∆−d). (42)

Ideally the implicit and projective integrators tend to select a common step size H that is
based on the accuracy requested for the initial value problem. In that case, the integrators
are equally expensive when the cost of the linear algebra associated with the implicit step
is comparable to the cost of executing the outer PRK (or PAB) step. The latter cost can
be predicted reasonably well, and is usually dominated by the (k + 1)L+1 evaluations used
to bridge the time scales from h0 to within (roughly) an order of magnitude of H . Projec-
tive integrators are also highly scalable if the function evaluations are easily parallelized.
For implicit integrators, the difficulty of dealing with the linear algebra bottleneck is highly
problem-dependent. For complicated multiscale problems, it may be problematic to imple-
ment robust linear solvers or efficient preconditioning techniques—especially ones that scale
well on massively parallel machines. A good preconditioner is also needed for the linear (and
nonlinear) convergence tests to work properly. Furthermore, without a good preconditioner,
the desired implicit step size may need to be shortened if the resulting linear systems cannot
be solved efficiently. Nonetheless, implicit methods are still the most commonly used class of
integrators for stiff initial value problems. For large-scale applications, an excellent survey of
preconditioning techniques for Jacobian-free Newton-Krylov methods for implicit integrators
is given in [11].

6.4 Numerical results

We now demonstrate and compare the performance of projective and implicit integrators
on a spatially-discretized parabolic PDE problem. The test problem is the two-dimensional
diffusion equation

ut = uxx + uyy + g(x, y, t). (43)

The space and time intervals are x, y ∈ [0, 1] and t ∈ [0, 1.5]. The source term g(x, y, t) is
chosen so that the exact PDE solution is

u(x, y, t) = 1/ [1 + exp(8(x + y − t))] , (44)

which is used for properly specifying the initial condition and Dirichlet boundary conditions.
The spatial discretization uses second-order centered finite differences with a mesh width
of ∆ = 1/(n + 1) in each spatial direction, which provides N = n2 interior gridpoints and
unknowns within the unit square. The absolute and relative error tolerances are both set
to 10−3. For the innermost step size, h0 = 1/(8∆−2).
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TABLE IV

Solver statistics for projective integrators: 2D diffusion PDE

A B

Projective Runge-Kutta (k = 3) Projective Adams-Bashforth (k = 3)

N L f-evals steps error L f-evals steps error

100 1 1,325 27 (0) 9.6e-5 1 651 25 (0) 4.9e-4

400 2 2,524 26 (0) 7.6e-5 2 1,226 24 (0) 4.6e-4

1,600 3 4,827 25 (0) 2.9e-4 3 2,426 24 (0) 6.1e-4

6,400 4 9,627 25 (0) 2.4e-4 4 4,826 24 (0) 7.0e-4

The outer projective integrators PRK (k = 3) and PAB (k = 3) are used with telescopic
PFE (k = 1, M = 2) as the inner integrator. The number of inner telescoping layers L is
chosen large enough so that the adaptive outer integrator step size is based on accuracy
considerations. Recall that Richardson extrapolation (38) is used for local error estimation.
For problems of different sizes N , Table IV shows the number of function evaluations (f-evals),
number of accepted and (rejected) steps, and the maximum absolute error in a solution
component. The error is the time integration error, which is the difference between the
spatially-discretized numerical solution and a reference solution of the ODEs as computed
with a stringent tolerance.

Table IV gives the numerical results for solving the test problem using projective integrators.
For each problem size, projective Runge-Kutta uses about twice as many function evaluations
as projective Adams-Bashforth, but the PRK error is at least twice as small as that for
PAB. The number of accepted and (rejected) steps are nearly identical. The solver statistics
roughly demonstrate that PRK can be twice as costly as PAB, but that the smaller error
constant for PRK results in less solution error. Finally, note that when the problem size N
quadruples, the total number of function evaluations only doubles. The reason for this is
that the innermost step size h0 is reduced by (nearly) four, but an inner layer of telescoping
is added to bridge the now wider range between the fastest time scale and the slow time
scales of interest. Applying an extra layer of telescoping increases the inner PFE integrator
step size by k + 1 + M = 4, but only increases its cost by a factor of k + 1 = 2 since k = 1
and M = 2 for the additional inner layer of PFE.

We now compare the projective integrator results with the implicit BDF method that is
implemented in CVODE [10]. It is a variable step size, variable order BDF integrator and, for
fair comparison, we restrict its maximum order of accuracy to two. For the linear system of
equations that arise at each time step, we investigate two options: the use of a direct, banded
matrix solver with a finite-difference generated Jacobian; and, the use of the Jacobian-free
form of GMRES [15] with a simple preconditioner. The results highlight the importance of
efficiently dealing with the linear algebra workload generally associated with implicit meth-
ods. One property to exploit is the structure of the Jacobian. It is a pentadiagonal, band
matrix with a half-bandwidth equal to

√
N . Cost-effective techniques include using finite-
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TABLE V

Solver statistics for implicit BDF integrator: 2D diffusion PDE

A B

CVODE/banded matrix solver CVODE/preconditioned GMRES

N f-evals steps Newton error f-evals steps Newton GMRES error

100 61 34 (0) 37 3.3e-4 1,040 40 (0) 45 988 6.7e-3

400 79 32 (0) 35 3.8e-4 2,828 38 (0) 43 2,778 3.6e-3

1,600 127 38 (0) 43 5.6e-4 7,063 63 (1) 72 6,981 9.6e-4

6,400 199 32 (0) 35 2.7e-4 8,752 44 (0) 50 8,692 1.6e-3

differencing in which several columns of the banded Jacobian are estimated simultaneously
with one function evaluation. Another technique is to re-use the factored Jacobian (or pre-
conditioner) over as many time steps as possible. For a preconditioner, a CVODE routine
for approximating the tridiagonal portion of the Jacobian is used. Furthermore, we allow
GMRES to use as many iterations as needed to solve the preconditioned system of linear
equations so that CVODE can attempt to take the step size that it wants. For the other
parameter values in CVODE, default values are used.

Table V shows the results of using a second-order accurate implicit solver when the previously
mentioned direct and preconditioned iterative linear equation solvers are applied. As with
the projective integrator results in Table IV, roughly 40 steps are needed to integrate the
problem from time t = 0 to t = 1.5. Only in one case is a step size rejected (CVODE/GMRES
for N = 1, 600), and that surprisingly leads to 63 steps and thousands of extra function
evaluations. A comparison between Tables IV and V also indicates that the integrators
achieve roughly the same accuracy (about 1.0e-3). The cost of projective integrators relative
to implicit integrators will depend mainly on how expensive (both in terms of work and
storage) it is to solve the linear systems. With the banded matrix solver, Table VA shows
that the linear systems can be solved cheaply—especially since CVODE only computes the
Jacobian once and re-uses it across all the time steps. With GMRES, the preconditioner is
computed once or twice but the main cost is from executing the GMRES iterations. Note
that the average number of GMRES iterations per Newton iteration increases as the problem
size increases, which indicates that the preconditioner is less effective as the problem becomes
more stiff.

At first glance, it is reasonable to view these results as a firm example for which projec-
tive integrators and CVODE/preconditioned GMRES give comparable step size selection and
solution accuracy; though, in terms of cost, projective Adams-Bashforth is preferable. It is
important to note that the cost of the implicit CVODE/GMRES integrator can be greatly
reduced with a judicious choice of preconditioner—preferably with the O(∆−1/2) cost as es-
timated in (40). (But for more general, complicated or realistic problems, we cannot count
on easily coming up with such an effective preconditioner.) Similarly, the cost of projective
integration can be reduced by about a factor of three if more efficient local error estimation
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techniques (other than Richardson extrapolation) can be developed. Other improvements
may come from developing projective versions of other conventional methods besides ex-
plicit Runge-Kutta and Adams-Bashforth. In summary, we expect that for applications for
which both implicit and projective integrators can be used, there will be a distinct range of
problems and/or computer architectures that are exclusively favorable to each approach.

7 Conclusions and perspective

The mathematical analysis, algorithmic development and numerical results from the previ-
ous sections provide a foundation for an unconventional, fully explicit approach to solving
multiscale problems. The key innovation amounts to using an inner layer of first-order accu-
rate explicit integrators to develop and stabilize the stiff system at the fast and intermediate
time scales. A second-order accurate outer integrator can then be used to take time steps
commensurate with the slow time scales and accuracy requirements for the multiscale prob-
lem.

We have applied the new, second-order accurate projective integrators to stiff initial value
problems, and demonstrated step size selection and solution accuracy comparable to conven-
tional implicit integrators for a two-dimensional parabolic PDE. Yet projective integrators
potentially have a much wider range of applicability for large-scale scientific computing and
multiscale modeling [12,13]. In developing capabilities (e.g., local error estimation, adaptive
step size selection, stiffness detection) on par with implicit integrators for stiff initial value
problems, these features in projective integrators readily carry over to handling stiff systems
for which implicit integrators are not applicable.
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